
!

l':nclosed is a copy of a technical report produced by the ISIS

group. This report was produced under contract number NA(;2-593.

Respectfully yours,

Susan Allen,

ISIS Project Secretary
(607) 255-91.98

TIIIS REPORT IS UNCI,ASSIFI.ED ANI) HAY BE 1)IS'rRII_UTF_D V/IT[lOUT RESTRICTION

(NASA-Cr-186411) KELIA_LF BKOADCAST

PROTOCOLS (Cornel| Univ.) 26 p CSCL 05B

N90-2569-:,

Unclas

63/a_ OZ/O_r3

Chapter 14

Reliable Broadcast Protocols

T. A. Joseph and K. P. Birman

The distinguishing feature of a distributed program is not just that its various

parts are distributed over a number of processors, but that these parts communi-

cate with one another. The hardware in a distributed system allows a processor to

send messages to other processors; the operating system usually extends this facil-

ity to allow a process on one machine to send messages to a process on another.

The operating system may also provide facifities to set up virtual circuits between
processes and may include protocols that ensure a certain degree of reliability in

the communication. From the point of view of a programming language, how-
ever, these facilities are still rather low-level, and this has led to a search for

appropriate high-level abstractiom for inter-process communication. Some

reseaxchcrs suggest that distribution should be completely hidden from the pro-

grammer. They argue for an al:atraction that looks like a global shared memory.
This abstraction has the advantage that it is simple to program with -- writing a

distributed program is no different from writing a non-distributed one. However,

hiding distribution is not appropriate for all applications -- some applicatiom

need to have explicit knowledge of location, either to obtain fault-tolerance or for

better performance. Moreover, implementing the abstraction of a global shared
memory on a network of computers could be extremely inefficient, especially if the

network is large. It becomes increasingly difficult to justify the overhead of a

shared memory abstraction as the network size becomes larger and a typical

application runs only on a small fraction of the sites in the network.

A commonly used high-level ab6traction for inter-procesa communication is the
remote procedure call (R.PC), introduced by Birrell and Nelson (1984). A process

communicates with another using an interface that looks just like a call to a pro-

cedure. The advantage of this abstraction is that it simplifies distributed program-

ruing by making communication with a remote process look like communication

within a process. Its Limitation, however, is that it can only be employed for two-

293

PRECEDING PAGE BLANK NOT FILMED
OR!GIN/IL PAGE IS

OF POOR QUALITY

294
T. A. JOSEPH ANT) K. P. BLR.M.A.N

way communication, between a calling process and a called process. Remote pro-

cedure calls are therefore most useful in distributed programs that fit the 'client-

server' model -- client processes request services from server processes; server

processes accept such requests and respond to each of them individually. In con-

trast, ILPC is not a pa.rticuiarly convenient abstraction when a distributed pro-

gram is composed of a number of processes that have a high degree of inter-

dependence on one another and where the communication among them reflects

this inter-dependence. In such programs the communication often takes place

from one process to a number of processes rather than from a calling process to a

called process, as in R.PCs. An example ofsuch a program would be a server that,

for reasons of fault-tolerance or load sharing, is implemented as a group of

processes on a number of sites. It would be convenient ifa client requesting a ser-

vice from such a server could send requests to the group as a whole, rather than

being required to know the group's membership and to communicate with

members on a one-to-one basis. This is especially important if the server group

could change its membership or location from time to time. Also, if the members

of the group wish to divide up the work of responding to a request, each of them

must ensure that its actions are consistent with what the other members are doing,

and so they will need to communicate with one another. What is needed here is a

facility that enables a process to send a message to a set of processes. We will call

the act of sending a message to a set of processe, a broadcast, t

In its simplest form, a broadcast causes a copy of a met*age to be sent to each

destination process. What makes broadcasts interesting is that they must handle

the possibility that some of the processes taking part in the broadcast may fail in

the middle of a broadcast. For example, a failure of the sender could cause a

broadcast message to be delivered to some but not all of its intended destinations

-- a possibility that never occurs when ordy two processes communicate with

each other. To be useful to a programmer, a broadcast must have well-defined

behaviour even when failures may occur. Broadcasts that provide such guaran-

tees are called 'reliable broadcasts.' Reliable broadcasts are implemented using

special protocols that detect failures and/or take compensating actions. The

definition of broadcast used here is general enough to cover protocols like 2- and

3-phase transaction commit protocols, and indeed some of the broadcast proto-

cols described in this chapter are similar to these protocols. The discussion

begins with a description of the system model and the model of failures.

14.1 System model

Fzcb'i_ 14.1 shows a model of a disu'ibuted system. It consists of a number of

processors (sites) connected to one another by a communications network. Each

¢ l'b.s _ of the term b,0adcasl doe* not refer to any ha.rdwax_ broadcast faciJity. On the contrary,, we

a_t._ne otuv tl'xat the network provtde:s i:xm'lt-to-pou-R corrwnt.u'ucalaon, l.f the network does hgve a

broadcast ¢.apab_ity, some of the protocols deac.rtbed m this chapter can take advantag, e of it.

ORIGINAL PAGE IS

OF POOR QUAUTY

[4 RELIABLE BROADCAST PROTOCOLS 295

Processors I

??? ???

[
Cornrnunicahons network)

Figure 14.1 System model

processormay have a number of user proces_ executing on it. There isno

shared memory between sitesand so the only form of communication between

sitesisthrough the network, which enablesmessages to be transmittedfrom any

processor to any other processor in the system. Message transmission is asyn-
chronous: sending and receiving processes do not have to wait for one another

for communication to occur, and message transmission times axe variable. Fig-
ure 14.2 shows the structure of the communication sub-system at each site (the

meaning of the arrows will be described later). The communication sub-system
may be part of the operating system kernel, a separate system process, part of

the user process, or any combination of these. The issue here is its functlon rather
than its locatwn. The transport layer contains the hardware and the software

that enables a message to be sent from one processor to another. It is assumed

that the transport layer provides reliable, sequenced point-to-point communica-

don. That is, a message sent from one site to another is eventually delivered

(unless the sending or the receiving site fails), and that messages between any

pair of sites arc delivered in the order they were sent. This form of reliability is

achieved using protocols that sequence messages, detect lost or garbled messages

(with high probability), and retrammit such messages. Many such protocols axe
described in Tanenbaum (1988).

The broadcast layer implements the facility to send a me-_age from one pro-

cess to a set of proce_es, po_ibly on different machines. A process wishing to

perform a broadcast presents the broadcast layer with a message and a list of

destination processes for that message. The broadcast layer uses the destination

list to compute a set of sites that must receive this message, and uses the tran-

sport layer to send a copy of the broadcast message to each of these sites. It typ-

ically includes other information with the message, which is used by the broad-

cast layer at the receiving site. Depending on the broadcast protocol being exe-
cuted, there may be further rounds of communication among the sites before the

message is finally deLivered to the destination processes at each of the sites. In
what follows the site from which a broadcast is made is called its mitu_tor, and

the sites to which it is sent its rectpitnts. The arrows in Figure 14.2 shows a pat-

tern of message exchange that could arise when a process at site 1 does a

ORIGINAL PAGE IS

OF POOR QUALITY

296
T. A. JOSEPH AND K.P. BLR.MAN

AppLcauon Layer

Broadcast Layer

Transport Layer

Site I Site 2

J
Site 3

Figure 14.2 Communication sub-system

broadcast to processes at sites 2 and 3. In this figure, the broadcast layer at site

1 sends a message to the broadcast layers at sites 2 and 3, which engage in
further communicadon with the broadcast Layer at site 1 before they deliver the

message to the application.

The protocol executed by the broadcast layer depends on the level of fauJt-

tolerance it provides and on the way in which it orders the delivery of broadcasts

relative to one another. A number of such broadcast protocols will be con-
sidered and their cost-performance trade otis will be examined, beginning wath a

protocol that achieves a simple form of fault tolerance and then moving on to

more complex protocols providing various delivery ordering properties. The

detailed examples will be the broadcast protocoh of the ISIS system (Birman

and Joseph (1987a); Birman and Joseph (1987b)), but other, similar protocols
will be discussed in passing.

14.2 Failure model

To talk about reliable broadcasts we must first talk about what kinds of failures

we are trying to overcome. The simplest failure model is the 'crash model.' In

thin model, the only kind of failure that can occur in the system is that a proces-

sor may suddenly halt, killing all the processes that are executing there. Opera-

tional processes never perform incorrect actions, nor do they fail to perform

actions that they are supposed to carry out. Furthermore, all operational

processes can &tea the failure of a processor, much a_ if there were a special dev-
_ce connected to each processor and giving the status -- operational or failed --

of all other processors in a mutually consistent manner. For most of this chapter

l dt RELIABLE BROADCAST PROTOCOLS 297

it is assumed that only crash failures can occur. There are a couple of reasons

for restricting our attention to crash failures. First, the abstraction of crash

failures can be implemented on top of a system subject to more complex failures

by running an appropriate software protocol. The ISIS failure detector (Birman

and Joseph (1987a)) and the protocol described in Schlichting and Schneider

(1983) are examples of such protocols. Second, techniques are available to

automatically translate a protocol that tolerates crash failures into protocols that

tolerate larger classes of failures (Neiger and Toueg (1988)). Since protocols
that tolerate only crash failures are simpler to develop and to understand, it is

easiest to describe such protocols here, and then to either implement them on top

of an appropriate base layer or to use translation techniques to obtain versions
that are more fault-tolerant.

14.3 Atomic broadcast protocols

One of the simplest properties provided by a broadcast protocol is atormCity, that

is, a broadcast message is either received by all destinations that do not fail or by
none of them.t Moreover, non-delivery may occur only if the sender fails before

the end of the protocol. An atomic broadcast protocol will never cause a mes-

sage to remain undelivered at some non-faulty destinations if it has been
delivered at some others (even if some destinations fail before the protocol com-

pletes). This is a very useful property because a process that receives such a

broadcast can act with the knowledge that all the other operational destinations

will also receive a copy of the same message. This reduces the danger of a reci-

pient taking actions that are inconsistent with the actions taken by other proces-
sors. Consider the case where a number of processes each maintain a copy of a

replicated set of items and a broadcast Ls made to these processes requesting
them to add a particular item to this set. If an atomic broadcast protocol is

used, each recipient can add the item to its copy of the set in the knowledge that
all other destinations will do the same, and so their sets will all contain identical

information. Without atomicity, the implementor of the replicated set will have

to take steps to ensure that a failure will not cause some processes to miss

updates, which would result in the copies of the set becoming inconsistent.
At first glance, an atomic broadcast protocol might seem trivial to implement,

especially if the transport layer gives reliable point-to-point transmission. The

initiator could simply send the message to each destination site, and a recipient

could simply deliver it to any destination process at that site. But what happens
if the initiator crashes after it has sent the message to some (but not all) of the

destination sites? This leaves us in precisely the situation that we are trying to

avoid: some destinations have received the message, while others have not. To

make matters worse, the destinations that have not received the me_age have no

t Some researchers have used the term agomwLt.y to rder to stronger properties. Here, it i.s used to rne_n

a_l-or.noching delivery only.

298 T. A. JOSEPH AND K.P. BIR.NLA.N

idea that they should receive one. This means that it is necessary for one or

more of the recipients to detect that the initiator has failed and to forward the

message to the sites that did not receive it. This, of course, also means keeping a
copy of the message around for a while -- at least until it is known that all des-

tinations have received it. And, since copies of messages cannot be kept around

forever, some means must also be provided for a recipient to obtain the

knowledge that a message has been received everywhere, so that it can then dis-

card the message. This introduces fi.a'ther complexity. If a duplicate copy of a

message were to turn up at a site after knowledge about the message was dis-
carded there, it might be (erroneously) delivered a second time. Thus, one needs

to be certain that before the system discards a message, all copies of the message
have been purged from any active processors and communication channels.

_rhat originally seemed to be a trivial problem turns out to be not so trivial
after all_

At the _tiato[:

message m to all sites where there ks a dcsdnatton pm:w..cm

At a site rcccivung message rn:

if message rn has not been received already

l a copy of rn to all other sit where there ia a d_mataon proce8

del_er m to any deatmaJtion p_cm at thia site

Figure 14.3 A simple atormc broadcast protocol

Figaare 14.3 gives a simple protocol that implements an atomic broadcast that
tolerates crash failures. It is similar to the algorithm in Schneider (1986). When

a site receives a message for the first dine, it retrartsmits a copy of the message to

air the destinations. Hence if a site receives a message and remains operational,

all the destinations will receive a copy of the message. Thus atomicity is

guaranteed. However, this property is achieved at the expense of increased com-
mtmication because of the retransmissions. The protocol also takes up memory

space because the message (or some part of it) must be stored at a recipient until

all the retransmitted copies arrive, otherwise there will be no way of identifying

these copies as duplicates of the first one. This protocol could be modified to
retransmit messages only if the initiator is seen to fail. Most of the extra com-
munication would then occur only when a failure occus-s, which is more reason-

able. But even when failures do not occur, this protocol would incur extra

storage and communication costs. Each recipient must store the message until it
is notified that it has been delivered at all the destinations it was addressed to,

and thts notification will require some message overhead. In general, depending

on the properties that it achieves, a broadcast protocol will incur a cost in terr_

14 R..ELI.ABLE BROADCAST PROTOCOLS 299

of latency (the time between when a message is sent and when it is delivered at

its destinations), communication (because of extra messages or larger messages),

and memory consu.med.

14.4 More complex protocols

In the previous section a simple broadcast protocol was discussed that achieves
atomicity. There are two directions in which one could go to arrive at more

sophisticated protocols. One is to expand the class of failures that the protocol
tolerates. The other is to consider protocols that provide stronger guarantees

than atomicity. An example of a larger class of failures than crash failures is

'omission failures.' In this failure model, a faulty processor could crash as before,

or it could remain operational but occasionally fail to send or to receive mes-

sages. This is a realistic way to model processors connected by communications

links that may lose messages, or that are subject to transmission buffer overflows

capable of causing occasional message lea. Interestingly enough, the protocol
described above achieves atomicity even with this class of failures. We could go

even further, and consider failure models like Byzantine failures, where processes

may malfunction by sending out spurious or even contradictory messages. The
rest of this chapter, however, is restricted to crash failures, but considers proto-

cols that are more complex because they achieve stronger properties than atomi-

city. For protocols that deal with omission and Byzantine failures, the reader is

referred to Perry and Toueg (1986), and Lamport, Shostak, and Pease (1982),

respectively.

14.5 Ordered [aroadcast protocols

When atomicity was introduced, the example of a number of processes cooperat-

ing to maintain a replicated set of items was also comidered. Atomicity was seen
to be sufficient to ensure that all the copies of the set contained the same items.

But what if the processes were maintaining a quau of items instead of a set? In

this case, the order of the items is required to be the same in all the copies.

Atomicity is not sufficient here because there are no guarantees of the order in
which different broadcasts will be delivered to different destinatiom (especially if

they originate from different senders). Given a broadcast protocol that had the
additional guarantee that messages will be delivered in the same order every-

where, implementing a replicated queue is simple: this protocol is used to broad-

cast items to the processes maintaining the queue, and each recipient adds items

to its copy of the queue in the order that it receives them. Atomicity ensures

that all operadonal copies will contain the same set of items; the ordering pro-
perry ensures that these will be in the same order in all the copies. Without the

ordering property, the implementor of a replicated queue will have to include

code to ensure that all the copies agree on the order in which items are added to

3OO
T. A. JOSEPH AND K. P. BLRMA,N

the queue, which makes developing this application a more di_cult task. The

availability of an ordered broadcast can thus simplify the implementation of

many distributed applications, and much work has been done in developing pro-
tocols for such broadcasts. A few are described here.

If two sites broadcast messages to overlapping sets of destinations, it is possible

for these messages to arrive at the common destinations in different orders. The

essential feature of an ordered broadcast protocol, then, is that an incoming mes-
sage is delivered ordy when all the recipients have agreed on how to order its

delivery relative to other messages. This usually increases the latency, results in

additional communication, and requires that the message be stored for the dura-

tion of the protocol. The algorithms studied below differ in the way they trade

these costs off against one another.

The first protocol we study was proposed by Dale Skeen and is described

detail in Birrnan and Joseph (1987a) under the name ABCAST. It operates by
assigning each broadcast a timestamp and delivering me.,kqages in the order of

timestarnps. (These timestamps need have no relation to real time -- all that is

required is an increasing sequence of numbers.) When a site receives a new mes-
sage, it stores it in a pending queue, marking it as undLlivwabte. It then sends a

message to the initiator with a proposed tunzstamp for the broadcast. This pro-

pored timestamp is chosen to be larger than any other timestamp that th_ site
has proposed or received in the past. (To make the timestamp unique, each site

is assigned a unique number that it appends to its timestam_ as a suffu¢). The

initiator collects the timestamlas from all the recipients, picks the largest of the
values it receives, and sends this value back to the recipients. This becomes the

final t_razstamp for the broadcast. When a recipient receives a final timestarnp, it

assigns the timestamp to the corresponding message m the pending queue, and

marks the message as ddwerable. The pending queue is then reordered to be m
order of increasing timestam_. If the message at the head of the pending queue

is deliverable, it is taken off the queue and delivered. This is repeated until the

queue is empty or the message at the head of the queue is undeliverable (i/there

are delivc:able message after this undeliverable one, they remain in the queue

until the messages ahead of them are all delivered or moved after them in the

queue).
Figure 14.4 illustrates how this protoco| works. Let us assume that (processes

at) three sites are trying to broadcast me_umges mt,m_ and m s to the same set of

destinations at sites l, 2 and 3. Assume that the largest timestamps seen at sites

l, 2 and 3 are 14, 15 and 16 respectively. Step l shows the messages amving at

the recipients in different orders. They are all placed in the pending queues

marked as undeliverable (u), with proposed timestamps as shown. Nouce how

the site number ks used to disa.mbiguate equal timestaml_. In Step 2, the sender

of m t collects its propcsed timestamps (16.1, 17.2 and 17.3), computes the max-
imum (17.3), and sends this value to the recipients as the final timestamp. The

recipients mark the message as deliverable (d) and reorder their pending queues
as shown. Since there are no undeliverable messages ahead of m I at site 3, rn 1

can be taken off the queue and delivered there, but it cannot be delivered at

ORIGINAL PAGE IS

OF POOR QUALITY

[4 P,.ELL4_LE 8,, ,ADCAST PROTOCOLS 301

fiite I Site 2 Site 3

i

162 17.2 18,2 "

i
t/I t .'113 m 2

17.3 18,3 19,3 " "

Step I

m 3 m 2 rrt

L5,1 17,1 173 "

u u d

m 2 rtl; Ol_

16.2 173 182 ' ' "

u d t_

Step 2

• 11 "r't3 r¢l2

t rFl_
15.1

i LI

I

i7,1 19.3

d d

1

17.3 18.2 19.3 ' '

d u d

Step 3

r/l_ rtl 2

18,3 19.3

u d

; 173 18.3 193
I

I
I

rtt_ tyt_

183 193 i

Step 4

Figure 14.4 The ABCASTprotoco[

rn_ t'/i 7

18.3 19.2

d d

302
T. A. jOSEPH AN'D K, P. B[RMAN

sites 1 and 2. Step 3 shows the pending queues after the sender of m 2 sends its

final tirnestamp, and Step 4 shows the queues after the sender of m 3 does the

same. At this point, all the messages can be taken off the pending queues and
delivered. Observe that the messages are delivered at all sites in the order m i,

m 3 and then m 2, which was the order of their final timestarnps.

The ABCAST protocol assigns each broadcast a unique final timestarnp, and

all messages are delivered in the order of their final timestamps. This ensures
that broadcasts are delivered in the same order at all destinations. Because the

sender picks the largest of the proposed timestamps, changing the timestamp of a
message from its proposed one to the final one can only cause it to be moved

behind other messages in a pending queue, and never ahead of them. So a mes-

sage might have to wait for other messages to be delivered before it gets
delivered, but there will never be a situation where it is necessary to deliver a

message before one that has already been taken off the queue and delivered

(which would cause this protocol to fail).

Let us examine the costs associated with this protocol. First, observe that a
message cannot be delivered as soon as it is received; it has to remain in the

pending queue until at least a second round of message exchange has occurred,

and it has been assigned a committed timestamp. It has also to wait for all mes-

sages with smaller timestamps to be delivered. This represents the latency cost.
Second, each broadcast results in a higher communication overhead beyond the

act of sending the message to each destination site. Each recipient must also

send proposed timestamps back to the initiator and the initiator must respond to

all of them with the final timestamp. Finally, the message must be saved in the
pending queue from the time it [s received until the time it is delivered. This

represents the storage cost. (Actually, the storage cost is higher than this. Some

information about a message has to be maintained at each recipient until it is

known that it has been delivered at a/l the destinations.)

How this protocol deals with failures has not been described. If a recipient

crashes in the middle of the protocol, the initiator simply ignores it and contin-

ues the protocol without it. If the initiator fails, one of the recipients must take
over and nan the protocol to completion. It doesn't matter which recipient does

this, but if several recipients might take over in parallel, steps must be taken to

emure that all arrive at the same outcome even in the presence of fi.u'ther

failures. Details of such a mechanism are given in Birrnan and Joseph (1987a).
Chang and Maxemchuck (1984) describe another family of protocols that

achieve ordered reliable broadcasts. Their protocols do not require the transport

layer to provide reliable point-to-point transmi_ion -- unreliable datagrarns

suffice because the retransmission of lost messages is built into their protocols. In

these protocols, one member of each group of processes is a_igned a token and is

called the 'token site'. The token site assigns a timestamp for each broadcast,
and broadcasts are delivered at all destinations in the order of their timestamps.

This ensures that all broadcasts to a group are delivered in the same order at all
members of the group. The protocols require that the token be periodically

transferred from site to site. The list of possible token sites (called the 'token

14 R.ELL-s_LE BROADCAST PROTOCOLS 303

list') m maintained at each of the token sites, and a token site passes the token to

the next site in this list. The protocols operate correctly as long as the number
of failures that occur is less than the size of the token list. The sites go through a

'reformation phase' whenever the token list has to be changed -- either because
of a failure or because a new site is to be added to the List. The different

members in this family of protocols h,,ve different values for the size of the token
list and different rules for when the token is passed to the next site in the token
list. These rules also determine the various costs for the protocols.

In the Chang and Maxemchuck protocols, a message may be committed and

memory of it discarded only when the token has been passed twice around the
sites in the token list. At the end of the first round, it is known that the message

has been received everywhere, and at this point it becomes safe to begin deliver-

ing copies. At the end of the second round, it is known that the message has
been committed (delivered) everywhere, and procemes can safely discard any

status information needed during the protocol. Thus the rate at which the token

is passed from site to site (and the size of the token list) determines the latency
cost as well as storage cost (as information about a message has to be stored until
it is committed). If the token is passed rapidly, the latency and storage costs are

minimized, but unless special hardware can be exploited (such as an ethernet

broadcast), communication costs wit[go up. The communication costs may be

reduced by passing the ,,_ken infrequently, but this increases the latency and

storage costs. In the limit, if the token is never passed, the additional communi-

cation goes down to one acknowledgement message per broadcast, but the

latency and storage costs go up to infinity and fault-tolerance is lost.
There are several recent developments in this general area. Within the ISIS

system, a version of ABCAST is being implemented that uses elements of the

token-passing approach within a pre-existing ISIS process group. In this scheme,

a reliable protocol is used to disseminate a message to a set of group members.
One of these, the token holder, then performs a second reliable broadcast to

inform recipients of the order in which message delivery should take place. The

two phases _e a weakly ordered broadcast that requires only a single round of
communication. The cost is thus comparable to that of ABCAST. However, the

protocol permits an optimization according whereby the token is passed to the
sender of a broadcast as part of the ordering message. If the sender then does a
second ordered broadcast, it can combine the two rounds into a single one, yield-

ing a very substantial performance improvement. One might wonder how thas
scheme avoids the token-passing and reformation overhead of the Chang-
Maxemchuck scheme. The reason is that these functions are pushed down into

the mechanisms that ISIS uses for process-group management and to implement

the crash faalure abstraction, which impose minimal overhead unless a failure

actually occurs.

Spauster and Garcia-Molina (1989) have prolX_ed a third approach to solv-

ing the message-ordering problem. In their protocol, a tree is superimposed on
the set of processes in the system. To transmit a broadcast, the message is for-
warded to the least common ancestor of the destination processes, which in turn

3O4
T. A. JOSEPH A.N'D K.P. BIRM._'_/

uses a reliable FIFO protocol to handle message delivery. As in the modified
ISIS protocoL, the cost is low unless a failure occurs, in which case a more com-

plex mechanism is required to reform the tree and complete any broadcast inter-
rupted by the failure. In addition, recent work by Peterson et aL has resulted in

an ordered broadcast implemented on a set of kernel primitives called Psync. A
detaaled discussion of the approach can be found in Peterson, Buchholz, and
Schlichting (1989).

Finally, there has been comiderable recent interest in the me of 'optimistic'

protocols, especially in settings where a small set of senders broadcast to large
numbers of destinations. These protocols require the destinations to send nega-

five acknowledgements when packet los is detected, and often employ special

hardware feature* (such as Ethernet muldca_t) to reduce the number of messages

transmitted. Such approache-_ make trade ol_ to reduce communication traffic;

for example, very long delivery latencies are a common problem in optimistic
schemes. Hybrid schemes have also been proposed, for example ruing Ethernet
muldcast for transmission and some modified acknowledgement scheme with

constant cost and Limited latency to confirm delivery. A good discussion of these
approaches appears in Stephenson (1989).

14.6 Weaker orderings

Protocols that place a total order on all broadcasts are unefial for many applica-
tions, but it has been shown that they entail substantial latency, communication
and storage costs. The natural question that arises i_ whether or not there are

less expensive protocols that achieve something less than a total order on broad-

casts but which are nevertheless uneful for some applicatiom. Within the ISIS

system, much work has been done to develop protocols that provided sufficient
order to obtain consistency in replicated data, but which are asynchronous m the

sense that messages can be delivered as soon as they arrive at a destination

(without waiting for further rounds of communication). The advantage of using

such a protocol to transmit updates to replicated data is that if there is a copy of

the data at the sender site, the latency to update thin copy is almost zero (as a
message can be sent from one site to itself with very little overhead). As a result,

a local copy of replicated data can be updated at almost the same rate as a

piece of non-replicated data (with some background overhead became of me*-

sages being sent to the sites with the other copies). We begin with an example.

Figure 14.5 shows proce_es P and Q sending broadcasts bt, b2, ... to a group
consisting of A and B. (The dotted line, reprenent the passage of time; the solid

line, represent me_ages being sent.) For some applications, it may not be

important that broadcasts from different processes be delivered in the same

order, and it may be quite acceptable that A receives b t before b2, while B

receives b2 before hi, for example. On the other hand, because b3 and b4 were

sent by the same process P and b4 was sent after b3, the broadcast b 4 could con-

lain information that depend, on b 3. For example, if A and B were maintaining

14 RELIABLE BROADCAST PROTOCOLS 305

bl,

b_

P R A B

' b L

b_

b_

v v v v

Q

V

Figtu-e 14.5 Unordered, FIFO, and causal broadcasts

3O6
T. A, JOSEPH AND K. P, BI_MA2q

a distributed data structure and b 3 were a message to initialize this structure and

b_ were a message that causes this data structure to be accessed, then b_

depends on b 3. Because of this causal dependency, it is desirable that b 4 is

delivered after b 3 everywhere. The property required here is a FIFO property,

namely that all broadcasts made by the same process are delivered everywhere

in the order that they were sent. This property is achieved automatically if the

transport layer gives sequenced point-to-point communication (provided, of

course, that the messages are sent directly from the initiator to the recipients).

But what if P does a broadcast bs, which then does a remote procedure call to

R, which then does a broadcast b6? Broadcast b 6 ix logically part of the same

computation as b_ and could have exactly the same causal dependency on b_ as

b4 has on bj (b_ could be a message to initialize a data structure and b 6 one to

accesses it). Unfortunately, because b_ and b 6 originate from different processes,

the FIFO property gives no guarantee about the order in which they will be

delivered. This is especially unfortunate because if b 6 were a broadcast from

within a local procedure call, a programmer developing this application couJd

take advantage of the fact that the deliveries would be ordered, but just because

the procedure call happened to be remote, the task becomes far more compli-

cated. What would be useful here is a broadcast protocol that guarantees that if

the initiation of a broadcast b is causally dependent (as described above) on the

initiation of a broadcast b', then b will be delivered after b' everywhere. We

need to formalize the notion of causal dependency before we can proceed with

the protocol.

An event a occurring in a proces-_ P can affect an event b in a process Q only

if information about a reaches Q by the time b occurs there. In the absence of

shared memory, the only way that such information can be carried from process

to process is through messages that travel between them. Accordingly, as in

Lamport (1978), the potential causality reladon a --) b (b is potentially causally

dependent on a) can be defined to be the transitive closure of the two reladom

--, and ---* defined as follows:
1 ")

1. a ---, b if a and b are events that occur in the same process and a occurs

before b.

2. a --* b if a is the sending of a memage and b is the receipt of the same mes-

sage.

Informally, ifa is an event in process P and b is artevent in process Q, then a--,b

if and only if there it a sequence of messages ml, rn2, " • • , m, and processes

P -- Po, P i, P2, -.., P, = Q; (n _ 0) such that message ,1, travels from P,_l

to P, and is delivered to P, before m, _ _ is sent from there. Also, m l is sent from

P after event a occurs there, and m, is delivered to Q before b occurs there. It is

the existence of this sequence of messages that enables information about a to be

carried to Q and so makes b potentially causally dependent on a.

i _t RE 2 i_ k P,R_ JA:3{:._.:,7 PRu'gOCOLS 307

"_,]_at :s ,needed. then, m a broadcast prntoco[that ensures that if

_e,',a b _ .e,_t _ ._ , will be delivered alter b! at all overlapping destinations.

The pr,_t,_,,_ ("r''_ I fT ,tbr Causal BroadCAST) described in Birman and Joseph

11987a, a_bae_es this. l-'he protocol in Peter'son, Buchholz. and 5cm.chting

,1989'_ is sim,.lar. TEe easiest way to expIain the CBCAST protocol is to start

with a grossly inefftcient version and derive the actual protocol from it. Imagine

that for each process P the broadcast Iayer at its site keeps a buffer containing

everw message P has ever sent or received (m order). Any time a broadcast b ts

initiated bv P, this buffer will then contain every message that could have

causally affected b. _'henever any message m is sent from a site, the protocol

sends the entire contents of these buffers along with m (in other words, it piggy-

backs the buffers onto m). At the receiving site, the broadcast layer adds the

piggybacked messages to all its buffers (preser-,'ing their order, but discarding

duplicates) even if the piggybacked messages are not destined for any process at

that site. It then delivers !in order) any messages destined for processes at that

site. the last ol which will be m.

The reason v, hy the protocol described above works is simple. If b 1 is ini-

tiated bv process P at site S and be by Q at T and if send(b i) ----. sendi.b,__, then

there must be a sequence of messages as described above from S to T. The pro-

tocol ensures that b t will be piggybacked on this sequence of messages !and pos-

sibly on other messages as well) and so b I will reach T and before b, is sent

Since b will be in Q's buffer when b, is sent from there, b L will be piggybacked

on b, and will hence be delivered before b e at any overlapping destination.

The problem with the scheme described above, of course, is that the amount

of intbrmation to be piggybacked grows indefinitely There are a number of

ways in which the protocol described above can be improved. First. the buffers

can be maintained on a per-site basts instead of on a per-process basis. This

reduces the storage overhead. Second, a message does not have to be pig-

gybacked to a site if it has been sent there already. More importantly, messages

do not have to be piggybacked once it is known that they have reached all their

destinations, because they will be discarded on arrival anyway. Tbas means tEat

a message needs to be piggybacked only from the time a broadcast is initiated

until the t_me It reaches at all the destination sites. If we call thss ttme period _,

pigg_backang need occur only if broadcasts are being made at a rate of more

t._an one every 8 time units. 8 is usually a very, small window and so unless

:_roadcasts are being made rapidly one after another, there need be very, iitt!e

act._,! pig,'backing. The initiator can stop piggybacking a message when its

trap_port laver receives an acknowledgement from all the recipients: other sites

m_st continue to do so until they are informed that the message has reached all

:ts destinations The peril)finance of this protocol thus depends on how

effectively this ir,£orrnation is propagated to sites that have a copy of this mes-

,age ['his issue can be avoided by ptggybacking a message only on messages

going di:ettlv to the destination sites. Other sites are instead sent a small

descriptor tr',at identifies the message. If a destination receives a descriptor

betbre it receives the actual message, it must wait for the message t_, arrive

ORIGINAL PAGE IS

OF POOR QUALITY

308 T. A. JOSEPH AND K. P. BgRMA.N

before deiivering any message that may causally depend on it.
.Messages sent _:_ing the CBC__,_T protocol can be delivered as soon as they

reach a destination site. There is no need to wait for additional rounds of com-

munication and hence no latency cost (except to the extent that transmitting

larger messages may take a slightly longer time). The protocol requires no addi-
tional messages besides those required to get the message from the initiator to the

destinations, but it does increases the message size. In most systems, the number
of messages (and not their size) is the dominant factor in the communication

costt and so the communication overhead is minimal. The protocol does have a

storage cost because the messages have to be buffered while piggybacking is
going on.

FIFO broadcasts preserve the order of causality in a computation that rum at

one site; causal broadcasts generalize this to distributed computations. Causal
broadcasts can be used to order deliveries when all broadcasts to a group arise
from a computation with a single thread of control, but this thread of control

may span several sites (because of remote procedure calls, for example). They

can also be used when broadcasts to a group arise from different computations,

but these computations have some other form of synchronization relative to one
another. An example of this is broadcasts to a group that arise from within

nested transactions whose sub-transactions may run on different sites. Here, the

broadcasts arising from sub-transactions of any one transaction will be ordered
because they are causally related; broadcasts arising from different transactions

will be ordered because of the concurrency control mechanism used to imple-
ment nested transactions.

14.7 Real-time delivery guarantees

Another property that may be useful in a reliable broadcast protocol is that

delivery will occur within a specified amount of time after the initiation of the

protocol. This is especially useful in real-dine systems and in control applica-

tions, where a broadcast that arrives too late may not produce the desired
response. If a broadcast is being made to a set of processes to instruct them to

each begin some action, it might also be desirable that broadcast deliveries occur

within a known time interval of one another, so that their actions take place

with some degree of simultaneity. The protocols described earlier make no such

guarantees -- they ensure that broadcasts will eventually be delivered to all

non-faulty destinations, but delivery could take arbiu'arily long.

Cristian et aL (1986) describe several broadcast protocols that provide real-

time delivery guarantees. For such protocols, one needs to have timing bounds

on various aspects of system behaviour, for example, a bound on the time it
takes for the system to schedule a process for execution, a bound on the dine it

t I Iras _ true only up to a point, ff a message size gets very tatge, it may have to be fragmented _to a

r_umber of smaller pacge_ before being _ra.mmitted.

}: RE, [A,a,L F BRI).-_,DC..-X:_T PRO_()CC);-._ 309

_,.t_e.s lbr a message to travel from one site to another, the abiLit-v to schedule an

_._ent t,) occ:=r ',,i_hi_ a certain time. and so on. Given such bounds, one can

ue_{se br,0ao._t protocoLs by ta_ng into account worst-case t2ming benavio_m

For example. _tmultaneous delivery' can be achieved by Umestamptng each

broadcast with the sending time t and computing _, the mauxamum time it can

take for a message to reach a destination. Now, if a broadcast is buffered at

each destination and delivered only at time t-a, simu]ta.neous delivery Ls

achieved. It should be noted that "simuLtaneous' here means that the processors

wii[deliver a broadcast at the same time as read off thezr own clocks, in practice,

the clocks of individual processors wilL differ somewhat from real time, and a

broadcast will hog be delivered everywhere at exactly the same instant. How-

ever, by using algorithms such as described in Srikanth and Toueg t 1987), the

clocks of the venous processors can be synchronized to the degree required, thus

acl'tieving the desired level of simultaneity.

The calculation of the constant X must take into account possibLe differences

in clock values as weil as possible scheduling and message transmission delays,

and is described in detail in Cristian et aL (L986'L In addition, this calculation

must account for faulty system behaviour. One kind of possible failure is a "tim-

ing fault'. RecaLl that the protocols were based on timing bounds for certain sys-

tem activities. If the system violates these timing bounds l such as when a mes-

sage takes longer to be delivered than the assumed upper bound), a timing fault

occurs. Other classes of failures Like ormssion or Byzantine failures could aLso be

considered. Crmtian eta/. (1986) describe protocols to achieve reliable real-time

broadcasts that tolerate increasingLy higher classes of faults, from no faults at all

to Byzantine faults.

There is a basic difference between these protocols and the ones described ear-

iier. The earlier protocols use explicit message transfer to ensure that a broad-

cast has arrived at all its destinations and to agree on an order for its deliver'.

These protocols, on the other band, use the paxsage of time (and knowledge of

timing bounds on system behaviour) to deduce the same information implicitly

.-ks a result, the Latter protocoLs will, in general, have a lower communication

cost. However the Latency and storage costs are based on worst-case system

behaviu_r If the variance in the duration of system events lsuch as message

trazumiss_on_ is Low and one has accurate estimates of these times, the latency

and storage costs are likely also to be low. On the other hand, if the variance ks

hzgh ,as would happen i.f the load on the system is variable), then the tact tlt,at

these costs are based on worst-case behaviour might make them unacceptably

h:gh The iatency is especially critical, because the perceived speed of an appLi-

_at;on performing broadcasts depends on this. For this reason, recent work on

n:at-time protocols has been focused on ways to reduce the delay constant

ruder assamptions that limit the number of various types of faults that can occur

v_h:le the protocol _s executing. With these sorts of assumptions. A can be

br,)t_ght do_,'n into the lOOms range tbr a small network of fast machines with

closeiy s_nckroruzed internal clocks.

O_]GINP, L PAGE IS

OF POOR QUALITY

310
T. A. JOSEPH AND K. P. BLRMAN

14.8 Broadcasts to dynamically changing groups

Until now, only broadcasts made to a fixed set of destinations have been con-

sidered. The protocols described above assume that the set of destinations is

known when a broadcast is initiated and that it does not change. For many

applications, it is usefi.d to be able to broadcast a message to a 'process group'

-- a logical name for a set of processes whose membership may change with

time. Such a group may implement some service, like a document-formatting

service or a compile service. The reason for implementing such a service using a

group of processes instead of a single one may be to divide up the work of

responding to a user's request over a number of machines, to obtain faster

response time by executing a user's request on the machine best suited to that

particular request, to have the service remain available despite the faih.u'es of

some machines, or any combination of these. New members may join the group

as the number of requests on the service increases or as idle machines volunteer

their cycles for the service. Members may leave the group as the load on the

service decreases or when a machine crashes. It is useful if a user of such a ser-

vice can use the process group name to communicate with the service without

needing to know the membership of the group or where the members are
located.

To implement broadcasts to process groups, the system must provide a facility

for mapping process group names to sets of processes, and provide some seman-

tics for what it means to perform a broadcast to a group whose membership

might be changing as the broadcast is under way. The V system (Cheriton and

Zwaenepoel (1985)) provides a means to broadcasts to process groups, but there

are no ordering guarantees on broadcast message delivery. Also, if the member-

ship changes as a broadcast is in progress, it is possible for the broadcast to be

delivered to some intermediate set of destinations that is neither the old member-

ship nor the new one. In Cristian (1988), Cristian discusses the problem of

agreeing on group membership in systems that have dming bounds on their

behaviour, and describes a solution based on the protocols described in Cristian

et aL (1986). The ISIS system provides an addressing mechanism that permits

ordered broadcasts to be made to dynamically changing process groups. In

addition to causal or totally ordered message delivery, ISIS guarantees that if

the membership of a process group is changing as a broadcast is under way, the

broadcast message will be _clivered either to the members that were in the

group before the change or to those that were in the group after the change, and

never to some intermediate membership. In other words, it is never possible for

a broadcast to a group to be delivered to some processes after they have seen a

change in the group membership and to other processes before they have seen

that change. Let us see why this property is useful.

Figure 14.6 shows processes executing in an environment where broadcast

delivery is not ordered relative to group membership changes. A process P is

using a broadcast to present a task made up of 6 sub-tasks to a group currently

' 1- RFI L-_.BLE _RI.)ADq_.ST PROTOCOLS Ill

P (eA Be_

e

r ' ,

i Qk_Q I

@@@
r
I

V V V V

Figure 14.6 Unordered group membersmp changes

,,,rtsisting of processes ,4 and B. The group divides up the task equally, with the

nr'st process taking the first set of sub-tasks, and so on. .-knv deterrmntstic order-

m_ on process names may be used -- the Dxacographic order has been usecl in

:n:s example. Let us suppose that P sends the group another similar task around

_ne same time that process C attempts to .join the group. The fig'u.re shows A

rt_-e:v:ng the task before it knows that C has joined the group, while B and C

rete;_e the task after they see C join. C,ortsequent[y. A divides the task on the

aas"mmption that the group consists of two members, while B and C do so on the

assu.rnptu)n that there are three members. The result is an inconsistent divtsion

312
T.A. IOSEPH AND K.P. BIRMA/¢

of the task. In this case, sub-task 3 gets executed twice (which may or may not

be acceptable), but if this anomaly arose as a member was ltavtr_ the group

instead of joining, some sub-tasks might end up not being executed by any
member _hich is clearly unacceptable). The only way to avoid this problem it

for the group members to execute some protocol that ensures that they all have

the same view of the group membership before they respond to any request.
However, if the broadcast delivery had been ordered relative to group member-

ship changes, this problem would not have arisen in the first place.

What the example ill_trates is that if broadcast delivery is not ordered rela-

five to group membership changes, and if the members of the group have to

coordinate the actiom they take in response to an incoming request, then addi-
tional protocols are needed to ensure that their response is based on consistent

views of the group membership. This would increase the complexity of the algo-

rithms needed and make the task of the person programming such an applica-
tion a difficult one. On the other hand, if broadcast delivery ts ordered relative

to group membership chan_es, there are no such problems. Each member can

respond to an incoming request based on its view of the group membership, with
the assurance that when the other members receive the same request, they will

all have exactly the same view, and will consequently take consistent actiom.

Note that group membership may change not only when a process voluntarily

joins or leaves a group, but also when a process drops out of a group because of

a failure. To be completely useful, the process group mechanism must order
broadcast deliveries with respect to the latter kind of group membership change

as well. This might seem impo_ible to achieve because the system has no con-

trol over when failures occur, but in fact it can be achieved because what is

important is that each process obstrots group membership changes and broadcast

deliveries in the same order, or that each process aguas failures and broadcast

deliveries in the same order, and not that the failure actually occurs in an ord-

erly fashion. Similar observations have been made for database systems that

manage replicated data in the presence of failures (Berrto,ein and Goodman
(1983); Bermtein, Hadzilacos, and Goodman (1987)).

To explain how the process group mechanism is implemented in the ISIS sys-

tem, we will first describe a simplistic mechanism and then show how it may be
modified. For now assume that every site in the system has a table containing

the names of every existing process group and their current membership. When

a procem at a site initiates a broadcast to a group, the system simply obtains a
list of the current members from the table at that site and executes the relevant

broadcast protocol using that list. When a process joins or leaves a group, the

tables must all be changed. This it done using a special broadca,t protocol
wh_e deliveries are ordered consistently relative to all other kinds of broadcasts.

In ISIS, the other kinds of broadcast are ABCAST and CBCAST, and the

corresponding special broadcast protocol is called GBCAST (for group broad-

cast). An interlocking mechanism is also required to ensure that broadcasts that

have been initiated using the old membership list are delivered before a
GBCAST is delivered. When a GBCAST is delivered at a site, the table at that

[_" R_-L_,BLE BR_.DC._._T ?ROTCJCc_LS 313

site .s _:nange< and ail interested processes are notified of the membership

hange Sin- GBCL\ST is ordered relative to all other broadcasts, all processes

observe me.mbersn:p changes in at way that is ordered con.sistentiy with respect to

other broau:ca.st deliveries.

It is impractical to maintain group membership Lists on a system-wide basis

and carry out a system-wide broadcast whenever the membership of any group

changes. V_'hat ISIS actually does is to maintain iru%rmation about r.he

membership of a group at the sites where members reside (member sites) and

optionally at a few other sites _chent sites). Membership changes are broadcast

using GBCAST only to member and client sites. This ensures that membership

changes are ordered relative to broadcasts that originate from member or client

sites. If a broadcast L_ made to a group from a site that is neither a member nor

a client site, the system first obtains the current membership List from elsewhere

(or uses an old but possibly maccurate cached [i.st) and then executes the

relevant broadcast protocol. This leaves open the possibility that the member-

ship may have changed between when the broadcast message was initiated and

when it is about to be deiivered. The system detects this if it happens and does

not deLiver the message. Instead, it sends the new membership list to the initia-

tor site. which then restarts the broadcast protocol with this new set of destma-

tions. This protocol will continue to iterate until the membership list remains

unchanged from the time the broadcast is initiated until the time it is delivered.

This kind of iteration increases the possible latency cost. This cost can be

_educed by increasmg the number of client sites, but the trade off is that

membership changes now become more expensive.

14.9 Degraded behaviour

The protocols described in this chapter have been designed to be tolerant of

various types of failure and by using them one can achieve a certain degree of

robustness in a distributed system. At the same time, it is important to be aware

of the [umitations of these protocols -- the assumptions they make, the types of

failures they do not handle, and the ways in which their performance may

degrade when failures occur. Each class of broadcast protocols discussed above

makes assumpt',ons about the responsiveness of processors, the way that failures

mamfest themselves when they occur, and the way that a failed process or pro-

cessor should be treated subsequent to the failure. Before applying a protocol in

a g,ven setting, it ks important to evaluate the validity of these assumptaons in

the intended execution environment.

.-ks an example, consider the protocols that ISIS uses. It was indicated above

that ISIS implements a crash failure model. Specifically, ISIS assumes that pro-

Cessors fail by crashing and builds a crash failure detector using a tow-ievel mes-

sage exchange protocol, as described in Bwrnan and Joseph (1987a). This low

level protocol, in turn. is tolerant of message loss and duplicate delivery, but not

of partitioning failures. It a.ssurnes that processors that continue to send out

OR!G!NAL PAGE IS

OF POOR QUALITY

314
T.A. JOSEPH _N'D K.P. B_

messages are non-faulty, and operates by having processors send 'Are you alive?'
messages to other processors whenever they seem to be unresponsive. These
probe messages are sent out sufficiently often to ensure that if a crash does occur,

it will be noticed by some operational procel_or in a timely fashion. B_ on

this. a two-phase protocol is used to manage the processor status information on
which the crash-failure abstraction is based.

From this, it can be seen that ISIS is simply intolerant of failures that cause a

processor to continue executing while sending incorrect messages or violating the
rules of its protocols. If such behaviour occurs, all bets are off. Moreover, if a

processorbecomes partitionedfrom the remainder of the ISIS system,or gets

overloaded to such a degree thatitceasesto respond to livcnessprobe messages,

itwillappear to have failed.ISIS handles thesecasesexactlyasfor a genuinely

failedproce_or -- by isolatingthe processorfi'omthe restof the system (any

messages appearing tocome from that processorare discarded)and by requiring

that the processorin questionexplicitlyrejoinsand isrcintegratcdintothe sys-

tem. Processesexecuting on the 'failed'processorarc informed that they have

been isolatedfrom the restofthe system,and are expected toreactina way that

limitsthe degree of inconsistentbehaviour that can occur during the period

beforeitrejoinsthe restof the system. In the currentversionofISIS, ifseveral

processorsfind themselvespartitionedfrom the remainder of the system, they

may a/lbe forcedtoundergo such a restart:normal executionispermittedonly

in a partition that has a majority of processors in it. An important area for

future work in ISIS is to permit a significant level of processing to continue in

such a partitioned mode and to provide useful tools for merging paxtitions whcn
communication is restored.

What are the practical impfications of all this? One is that the ISIS system

should probably not span communication links subject to frequent commuaica-

t/on partitioning. A preferable approach would bc to run one copy of ISIS on

each side of such a link, and use other 'long haul' mechanisms to connect appli-
cations that run on both sides. Similarly, since the ISIS approach incurs an

overhead when a site faih or recovers, there arc probably limits on the size of
network within which it can be used. However, the ISIS failure detector seems

to scale up to at least one or two hundred machines without imposing a severe
overhead, and this is without any sort of hierarchical scheme -- implementation

of this is the obvious next step. On the other hand, the fact that an unrespomive
machine could be comidcred failed is a potential source of concern. If one were

to overload a collection of machines running these sorts of protocols, some

machines might be treated as if they had crashed, which would serve to exacer-

bate the load on the system. One could speculate about the use of adaptive

methods to deal with this problem more gracefully, but they would certainJy

increase the system latency in responding to a failure, and in any case it is

unclear how one would implement such a scheme in a decentralized fashion.

The point here is that serious thought needs to be given to the operational
characteristics of an environment and the mariner in which it dcgrades under

load as a basic part of a decision to use protocols such as these.

-_m.._r , .,_s,c_-rat:c,r_ apply tn the case of the real-time broadcast protocols.

F">'_e :;r,,_ • -':_.re that processors which do not violate timing constraJnr_

:. retch',-. ::, ,_,:_ _[s correctly, but they do not provide a means for a processor

that vzu_ac_ these constraints to recogmze that it has done so.]_nis is a serious

problem, because such a faulty processor could be in an inconsistent state, but

can continue to corrwnunicate with the rest of the system, and its subsequent

messages wdi not necessarily be rejected by the operational processors in the sys-

tem. Thus these protocols can allow information to propagate out of an incon-

sistent processor, and this could comprormse the entire system. The reai-time

protocols place a number of tmamg constraints on the system, including limit_ on

the maximum time betbre a processor responds to a message, on the time needed

to propagate a message through the network, and on t.he degree to which proces-
sor clocks are _wnchromzed. Clearly, these are all constraints that an overloaded

svstem could vioiate. [t can be argued that this whole issue limits the use of

reai-time protocols to applications where any resulting inconsLstent behaviour

does not compromise the correctness of the system, or where overloads simply

caz_,ot occur. If one adopts the latter assumption, the protocols should only be

used in systems known to operate far from the thresholds at which t,ming faults

might become common. Other_'ise, were the _'stem load to gradually rise

above these thresholds, widespread violations of atomicity might suddenly occur,

leading to a catastrophic failure of the distributed application as a whole.

..Mthough it seem.s piausibie that one could design a class of adaptive real time

protocols immune to this problem, we know of no current research on th_s topic.

14.10 Conclusion

In thas chapter a number of broadcast protocols that are reliable sub)ect to a

vanet-y of ordering and delivery guarantees _ considered. Developing

appiications that are clistributed over a number of sites and. or must tolerate the

t_lure_ of some of them becomes a considerably swnpler task when such proto-

cols are available for communication. I_t, without such protocols the kinds

of di_strlbuted applications that can reasonably be bualt will have a very [irruted

.... pe .-ks the trend towards distribution and decentralization continues, it will

,':ut .be surprtsmg if reliable broadcast protocols have the same role in distributed

operating systems of the future that message passing mechanisms have in the

,p_:ratmg systems of today. On the other hand, the probiems of engineering

_,, in a system remain large. For e.,cample, deciding which protocol is the most

appropriate to use in a certain situation or how to balance the latency-

,:::mumcation-storage costs is not an easy question. It is our hope that a.s our

experience with broadcast based systerm grows, we will began to gain insight into

_ome t_f these pr_biems.

E_erl ,a_ k:_',_ _hese sorts of insights, however, the experience of programming

_ith reliable !,r,)adcast protocols can surprising in many ways. A:- entirely new

form of distributed computing becomes practical, one in which teams of

ORIGINAL PAGE IS
OF POOR QUALITY

316 T.A. JOSEPH AND K.P. BI_MAN

processes execute asynchronously but cooperate with one another in a consistent
fashion, sharing computational tasks and backing one another up for fault-

tolerance. Fredrick Hayes-Roth (also known for his work on speech recognition)

recently commented that 'a revolutionary change in how we think about distri-

buted computing is now within our reach, one that will be every bit as striking
as the transition from black and white to colour when Dorothy steps out of her

aunt's house into the Land of Oz.' Having worked with reliable broadcast pro-

tocols and built a system that elevates them to a high level of abstraction, we are

now convinced that reliable broadcasts are the key to this change in perspecfve.

In the next chapter, some of the reasoning underlying this conviction is explored.

14.11 References

P. A. Bernatein and N. Goodman (1983). 'The Failure and Recovery Problem

for Replicated Databases'. P,_ceedings 2rid ACM Symposwm on Pnnnples of Dtstri

buted Computing: 114--122, August 1983.

P. A. Bernstein, V. Hadzilacos, and N. Goodman (1987). Concurrency Control and

Recovery m Database Systems, Volume . Addison Wesley, Reading, MA, 1987.

K. P. Birman and T. A. Joseph (1987a). 'Reliable Commurfication in the
ence of Failures'. ACM Transamons on Computer Systems 5(1): 47--76, Feb. 1987.

K. P Birman and T. Joseph (1987b). 'Exploiting virtual synchrony in d_xi-

buted systems'. Proceedings Eleventh Symposmm on Operatzng System Princzples:
123--138, Nov. 1987.

A. D. Birrell and B. J. Nelson (1984). 'Implementing Remote Procedure Calls'.

,4CM Transanwns on Computer Systems 2(1): 39--59, Febnaaz'y 1984.

Jo-Mei Chang and N. F. Maxemchuck (1984). 'Reliable Broadcast Protocols'.
ACM Transactwns on Computer Systems 2 (3): 251--273, Aug. 1984.

D. R. Cheriton and W. Zwaenepoel (1985). 'Distributed Process Groups in the

V Kernel'. ACM Transaawnson Coml_rSystems 3(2): 77--107, May 1985.

F. Cristian, H. Aghili, R. Strong, and D. Dolev (1986). Atom_ Broadcast: From

Stmple Message Diffuszon to Byzantine Agreement. IBM Research Report RJ 5244

(54244), July 1986.

F. Cristian (1988). Reaghmg Agreement on Processor Group Membcrshzp zn Synthnmous
DtstrTbuted Systems. IBM Research Report RJ 5964 (59426), March 1988.

L. Lamport (1978). 'Time, Clocks, and the Ordering of Events in a Distributed

System'. Commumcatwns oft& ACM 21 (7): 558--565, July 1978,

14 RELIABLE BROADCAST PROTOCOLS 317

L. Lamport, R. Shostak, and M. Pease (1982). 'The Byzantine Generals Prob-

lem'. ACM Transactwns on Programmzng Languages and Systems 4(3): 382--401,

July 1982.

G. Neiger and S. Toueg (1988). 'Automatically Increasing the Fault-Tolerance
of Distributed Systems'. Proceedings Seventh AC,_I Symposium on Prtnceples of Dtstn-

buted Computing, Toronto, Ontario, Aug. 1988.

K. J. Perry and S. Toueg (1986). 'Distributed Agreement in the Presence of
Processor and Communication Faults'. IEEE Tramactums on Software Engineering

SE,-12(3): 477--482, Mar. 1986.

L. L. Peter'son, N. Buchholz, and R. Schlichdng (1989). 'Prenerving and Using

Context Information in Interprocexs Communication'. ACM Tramaatom on Com-

puter Systems, 1989. (Conditionally accepted.)

R. D. Schlichting and F. B. Schneider (1983). 'Fail-Stop Processors: An

Approach to Designing Fault-Tolerant Computing Systems'. ACM Tramaauma

on Computer Systems 1 (3): 222--238, Aug. 1983.

F. B. Schneider (1986). 'A paradigm for reliable clock synchronization'. Proceed-

ings Advanced Serntnar on Real-Time Local Area Networks, Bandol, France, April 1986.

A. Spauster and H. Garcia-Molina (1989). 'Message Ordering in a Muldcast
Environment'. Proceedings Ninth Internatumal Conference on Dtstrtbuted Comptamg Sys-

tents, June 1989.

T. K. Srikanth and S. Toueg (1987). 'Optimal Clock Synchronization'. Journad

of the ACM 34(3): 626--645, July 1987.

P. Stephenson (1989). Ph.D. Dissertation, forth_mmg, Volume . Dept. of Com-

puter Science, Cot'nell University, 1989.

A. S. Tanenbaum (1988). Computer Networks, Volume . Prentice-Hall, Engle-

wood Cliffs, N.J. 07632, 1988. (2nd edition.)

